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Outline

- Examples of terrestrial-glacier-ocean connections

—>The spatial cascade: large-scale, shelf-scale, estuary/fjord connections
The temporal mess: PDO/AO, interannual variability, tidal cycles

- Physical-Biological connections: coastal mountains, runoff, ocean
productivity

—>How can we understand this system = how do we sample this
system?
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Nearshore domain
Rarely sampled

The scales of the nearshore oceans (estuaries, fjords, coastlines) are small and typically not resolved

by satellites, models or observations - this includes horizontal scales (~1 km or less), vertical scales
(~1 m), and temporal scales (hourly to interannual).

Much of the oceanic heat and freshwater content are dominant in the very upper part of the ocean,
typically top 5-50 m! Very challenging to sample properly.
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AVHRR satellite image from July 2009 of the Mackenzie River Evolution of the Mackenzie Plume
delta, Alaskan and Canadian Beaufort shelves and the interior over a 20-day period from June 25 —
Beaufort Sea. Colors show sea surface temperature (SST) July 14 2008 from AVHRR SST

where purple and white is sea ice. Bathymetry contours are in imagery.
gray.



Dominant Time/Space scales and observation types

Monthly Seasonal Annual Interannual

Cycle (> 2 years)

Moorings Moorings Moorings  Moorings Moorings Moorings
Gliders, Gliders, Gliders Gliders HFR
Towed body Towed body HFR, HFR, Drifters CTD surveys
HFR, Drifters HFR, Drifters

Drifters

Moorings Moorings  Moorings Moorings Moorings
Gliders, Gliders, Gliders, HFR, HFR, CTDs
Towed HFR, Drifters,

HFR, Drifters Drifters, CTDs

CTDs

>150 km Moorings
Gliders, Body
Towed Body,

HFR,
Drifters

Gliders Gliders Moorings Moorings
HFR, CTDs

<1 km & min to hrs (and longer)
Red color = real time data AUVs, towed vehicles and drifters




Fjord Circulations May Be 2-Dimensional
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55-km Acrobat cross section across the mouth of Barrow Canyon
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This section consists of over 125 vertical profiles from the Acrobat
vehicle sampled over a 5-hour period



Alaskan coast
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Freshwater from creeks, rivers, glaciers and in situ ice melt create ocean fronts
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The observed sub-mesoscale horizontal density fronts play a role in setting
surface-layer properties by restratifying the mixed layer. This restratication
opposes processes (e.g. buoyancy fluxes and winds) that vertically mix the

surface ocean.

AUVs &Towed vehicles observations enable us to observe these processes due to
the high (~250 m) horizontal resolution. Important for biology (plankton, fish,
seals, whales) and physical processes (mixing, advection, oil spill trajectories) etc.
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MODIS, Nov. 7, 2001
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Annual Cycle in Biomass of Major Calanoids
(Spring/early summer juvenile salmon food)
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Primary production starts on the inner shelf earlier (0.5 — 1 month) than the mid-
and outer shelf due to different stratifying mechanisms.



Example of interannual variability
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Drifters: In order to define the circulation, temperature and salinity structure in a
large fjord system on the west coast of Greenland, we have deployed several ice-
strengthened drifters equipped with Seabird microCAT CTDs, where drifters
measure salinity at 0, 7, and 15 m depth.

Microstar SST-Iridium surface drifter 20-m drogued CTD-chain-Iridium drifter
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Acrobat Towed Vehicle

-real-time data feed through faired, small diameter Kevlar cable

-large data bandwidth via Ethernet

-small and easy to operate and deploy/recover from small vessels even Zodiac

-6 knot tow speed generates high-resolution data over large areas

-we instrumented the Acrobat with a 16 Hz Seabird FastCat CTD and 8 Hz Wetlabs Eco Puck




Autonomous Underwater Vehicles (AUVs)

Left: Deploying the REMUS AUV through coastal sea ice offshore of Barrow, Alaska. Middle:
Webb Slocum glider nearing the surface in Auke Bay, Alaska, 2010 . Right: The Exocetus Costal
Glider being field tested in extremely stratified conditions in Resurrection Bay, Seward, Alaska,

2012

Gliders can sample an area for up to 4 months autonomously.
The Coastal Glider can handle extremely stratified locations.
Real-time data via Iridium, which enables adaptive sampling.

Development need for complete long-term autonomous
sampling under ice
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